Axiomas de Campo
Un axioma es una verdad evidente ó una expresión lógica utilizada en la deducción para llegar a una conclusión.
Para el conjunto de números reales hay axiomas de campo.
Axioma 1 Cerradura
Si a y b están en R entonces a+b y a*b son números determinados en forma única que están también en R.
Axioma 2 Propiedad Conmutativa (Suma y Multiplicación)
Si a y b están en R entonces a+b = b+a y a*b = b*a.
Axioma 3 Propiedad Asociativa. (Suma y Multiplicación)
Si a, b y c están en R entonces a+(b+c) = (a+b)+c y a*(b*c) = (a*b)*c
Axioma 4 Propiedad Distributiva.
Si a, b y c están en R entonces a*(b+c) = ab+ac
Axioma 5 Existencia de Elementos neutros.
R contiene dos números distintos 0 y 1 tales que a+0 = a, a*1 = a para a que pertenece a los reales.
Axioma 6 Elementos inversos.
Si a está en R entonces existe un (-a) en R tal que a + (-a) = 0 Si a está en R y a es diferente de 0 entonces existe un elemento 1/a en R tal que a*(1/a) = 1.
El primer axioma garantiza que la suma y la multiplicación son operaciones binarias en los números reales. Los axiomas 2 al 4 indican la forma de manipular algebraicamente las dos operaciones. El axioma 5 establece la existencia de dos elementos distintos 0 y 1. Y el último axioma indica la existencia de los elementos inverso por lo que los números reales forman un campo, nótese que en la segunda parte de este último axioma se supone diferente de cero el número a.